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Abstract—A new technique for the numerical reconstruction
of images from a long-wavelength hologram is proposed. The
technique is to calculate images by the fast Fourier transform
(FFT) algorithm with the hologram data sampled by a straight line
approximation. This sampling technique is convenient to reduce the
number of the sampling points, and the image can be reconstructed
with less data than the conventional equally spaced sampling method,
A one-dimensional hologram is constructed at S band and an image
is reconstructed by the proposed method. These results are discussed
and compared with the results of the conventional numerical re-
construction.

1. INTRODUCTION

I

N THE PROCESS of reconstructing images from micro-

wave or soundwave holograms, the optical method is

usually adopted for its ease and high capacity as a pro-

cessor. The numerical method using a computer is another

technique for hologram data processing. The disadvantage

of the numerical method is that the hologram information to

be processed by this method is greatly limited by practical

considerations compared with the optical method, However,

since the information contained in a microwave or sound-

wave hologram is much less than that of an optical hologram,

the numerical method is a promising technique in reconstruct-

ing images from long-wavelength holograms. A few papers

have reported on this technique [1 ]– [3 ]. In these papers, the

hologram data are sampled at equally spaced sampling points

and two-dimensional Fresnel transform of the sampled data is

calculated using the fast Fourier transform (FFT) algorithm

[4], resulting in the reconstruction of images. In this paper a

straight line approximation technique is proposed to sample

the hologram data and a method to insert dummy data is dis-

cussed to apply the FFT algorithm in the proposed sampling

technique. Since this technique has the advantage that images

can be calculated with less nonzero data, compared with the

conventional sampling technique, it is useful in situations

where the total number of the sampling points of the hologram

is limited. To verify the proposed technique, a one-dimen-

sional microwave hologram is recorded at S band. This one-

dimensional hologram is sampled with the straight line ap-

proximation and an image is calculated. The results obtained

are discussed and compared with those of the conventional

numerical reconstruction method.

II. SAMPLING OF HOLOGRAM DATA

A. Equally Spaced Sampling

In scanned-type holography, it takes much time to con-

struct a hologram. To overcome this disadvantage, a linear or

planar detecting array system can be considered. In this sys-
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tern the number of arrav elements is limited from the techni-

cal and economical points of view. Therefore, it is questioned

how to arrange the array elements on the hologram plane. The

most suitable way is to place them at equally spaced points,

when any information of hologram data is not known a priori.

The same situation occurs in the numerical image reconstruc-

tion, where the FFT algorithm is used, resulting in the sam-

pling at equally spaced points. This sampling method deter-

mines a criterion for the maximum spatial frequency to be

recorded as the hologram data.

Let the number of the equally spaced sampling points be N

with respect to the one-dimensional hologram of aperture L.

The spacing Ax of each sampling point is obtained as follows:

Ax=+ (1)

Since the

frequency

maximum

hologram aperture is limited, the higher spatial-

part of the hologram cannot be recorded. The

spatial frequency ~~~a~ to be recorded in the holo-

gram is obtained referring to the result of [6]:

(2)

where A is the wavelength of the microwave signal and Z1is the

distance from the object plane to the hologram plane. On the

other hand, the maximum spatial frequency j~max allowable

for the sampling with the period Ax is obtained by the sam-

pling theory as follows:

1
fsmax=—.

2Ax
(3)

Therefore, the maximum frequency .&. of the hologram is

determined as the lower one of fA ~,x and js ~~x and is expressed

as follows:

f max = min (f~m..,-fS m..). (4)

Roughly speaking, the resolution of the reconstructed images

depends on the value of f&~. This fact suggests to us that the

most desirable way for arranging sampling points on the

hologram plane is to place them as satisfying the following

condition:

fA ma. = .fS max. (5)

From (l)–(3), the minimum spacing (A~)min and the aperture

L to satisfy (5) are obtained with the parameters A, z,, and N:

(6)

L = (kZIN)1f2. (7)
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Fig. 1. The geometry of the problem, (a) The geometry of producing
the hologram. (b) The optical geometry of reproducing images.

Thus the maximum frequency is as follows:

(8)

Equation (8) expresses the criterion for the resolution of the

reconstructed images.

B. Reduction of Sampling Points

For a given sampling number N, the minimum spacing

(A*)~in is determined by (6). When a hologram of a point

object, that is a Fresnel zone plate, is considered, (Ax)~in is

the spacing between two zones at the aperture end x = L/2

[see Fig. l(a), letting ZO+ ~ ] with the paraxial ray approxima-

tion. The variance of the interference fringes of a zone plate

becomes smaller as the center is approached. A hologram may

be considered as a linear superposition of many zone plates

[5]. For example, object waves O, and O, of two point objects

are assumed to be recorded by the square-law detection with a

coherent background b, and the hologram k is expressed as

follows :

I%=] b+o, +o,l’=lbl’+b”(ol +02)

+ b(o,* + O,*) + / 0, + 0, /’. (9)

Since the background term b is assumed to be much greater

than object terms 01 and 0~, the term 101+0~1 2 can be ne-

glected and (9) expresses the linear superposition of object

waves 01 and 02. Therefore, near both centers of the zone

plates associated with object waves 01 and 02, the interfer-

ence fringes vary slowly by virtue of the linear superposition,

while they vary rapidly toward the edge of the aperture.

These facts suggest the reduction of sampling points near the

centers of the zone plates. For example, a zone plate may be

sampled with the sampling period 2(A*)min, twice that of the

minimum sampling period of (6), at the center part of the

hologram, while with the sampling period (A*)min at another

part, (without greatly deteriorating the quality of recon-

structed images. From these arguments, if the geometry of

the object and illuminating waveshapes, that is the geometri-

cal shadow of the object on the hologram plane, is known, it is

possible to sample the hologram data with a greater sampling

period than (Ax)min at the shadow area, where the interference

fringes vary slowly without much deterioration of the recon-

structed images. In this manner the sampling points may be

reduced as compared with the equally spaced sampling.

However, a problem arises when the hologram data of the

reduced sampling points are processed numerically with the

aid of the FFT algorithm. The FFT algorithm requires the

sampled data at equally spaced points. To solve this problem,

a technique to insert dummy data is considered. However, if

the dummy data to be inserted in the calculation process are

nonzero, the advantage of reducing the sampling points van-

ishes. For this reason, the hologram data are sampled with a

straight line approximation, where dummy data can be trans-

formed to zero-valued data in the stage of computation.

III, ALGORITHM OF FOURIER TRANSFORM BY

STRAIGHT LINE APPROXIMATION

A. Fourier Transjorm by Straight Line A pproxirnation

A brief explanation is presented to evaluate the Fourier

transform by the straight line approximation, As shown in

Fig. 2(a), a function g(x) is approximated by a polygon gP(x)

with only straight lines, Let g~=g(z~) (k= O, 1, . . ., N– 1) be

the value of g(x) at the point x~ where g(m)= gP(.@. The

second-order derivative of g~(z) can be expressed as follows:

(lo)

where

gk” = gk’ – &l’ (11)

gk+l – gic
gk’ = (12)

x,&+l — x~

and 8(x) is the Dirac delta function. The schematic explana-

tion to deduce (10)-(12) is shown in Fig. 2. Let G(f) be the

Fourier transform of the function d2g(x)/d.x2 defined as fol-

lows :

w (i’g(z)

W_) = f —ax exp [–j27Tfx] d~. (13)
-m

Substituting (10) into (13), G(f) can be expressed as follows

[7]:

(14)
L=l

Equation (14) has a form similar to a discrete Fourier trans-

form (DFT), but it differs from the DFT in the point that the
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(a )X, ,gk

( b)g;=:k+l-g~
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(C)g; =g; -g’
k-1

Fig. 2. The explanation of w+, g(%), gp(x), gk, g~’, and gk”.

sampling point xk can be chosen arbitrarily in the straight line

approximation, while the DFT requires the sampled data at

equally spaced points. The arbitrariness of sampling is an

advantage of the straight line approximation,

B. A fifilication oj FFT

In order to calculate G(j) of (14) by the FFT algorithm, it

is necessary to coincide (14) formally with the DFT. For this

reason g(x) is considered within the region [0, L] and outside

of this region g(x) repeats itself with the period L. Therefore,

the following relation is added:

gN = go (15)

gN – ~N–l

gN–1’ = = g-l’ (16)
L – XN-I

and from (11),

go” = go’ – g-l’

gN_l° = gN–1’ – gN-2’. (17)

Adding go” and gM_l° to (14), the following expression can be

obtained (see Fig. 2):

N– 1

G(f) = ~ gk” exp [–j2Tj%].
k=o

(18)

The region [0, L ] is assumed to be divided into N sections

with equal spacing and the straight line approximation is

adopted. Then xk of (18) expresses the sampling coordinate at

equally spaced points and is written as foI1ows:

T

N–1

[1
G(r) = ~ gk” exp –j2r # (2

k=O

is obtained, where G(r/L) is expressed by G(r). Using (21), the

Fourier spectrum G(r) can be calculated with the data gk”

obtained by the straight line approximation. However, in

(21), the advantage that the arbitrary points can be chosen

as the sampling points in (18) is lost. For this reason, a tech-

nique to insert the dummy data is proposed to save the ad-

vantage of the straight line approximation even a little.

C. Insertion of Dumrmy Data

In the smooth part of the original function g(x), the

straight segments of the polygon gP(x) can be taken longer

than the minimum sampling period determined by a certain

criterion. In the discussion on the zone plate in Section II-A,

this criterion is the minimum sampling period (A~)mi. of (6) to

record the maximum frequency j~~x of (8). In Section II-B it

is argued that the sampling points can be reduced near the

center of the zone plate, where the function of the zone plate

becomes smoother. For example, the smooth part of the func-

tion can be sampled with the period twice of the fundamental

one as shown in Fig. 3. However, additional data, that is

dummy data, are necessary to process the data by (21). If the

dummy data to be inserted are nonzero data, it is useless to

reduce sampling points at the smooth part of the function.

Since the second-order derivative of the straight line is zero,

the dummy data g~-l” at the unsampled point x~_l are always

zero, as shown in Fig. 3, in the straight line approximation:

/t _
g&l – o. (22)

-!4

%k=—k, k= 0,1, . . ..l–l. (19) With the data of (22), the number of calculating operations in
N the FFT al~orithm can be reduced. If the total number of the

In the DFT, the frequency is also sampled in the frequency sampling points is limited in the hologram-constructing sys-

domain as follows: tern, the hologram can be sampled more closely at the part of

fine interference fringes, or a larger hologram aperture can be

f=+-r, recorded compared ~ith the equally spaced sampling, insert-
r=(), l,... ,N–1. (20) ing dummy data by the straight line approximation. The error

of the FFT in the straight line approximation can be esti-

Substituting (19) and (20) into (18), mated by the deviation of the polygon from the original func-
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Fig. 3. Insertion of the dummy data and the reproduced data by the
inverse transform. (a) Data g~..z, g~, and g~+zexist only atx~-.j, W, and
Xk+l, respectively. (b) gtr. (c) g~tl is nonzero at w-z, w, .W+Z, and zero
atthe other points. (d) Data by theinvtxse transform: -- - - - - - - - - O;
original data: --- X. (e) The general case.

tion, while the error of the customary DFT is understood as

the aliasing error.

D. Iwuerse Trans~orm and Consolation

The orthogonal property of exponential function in the

DFT guarantees the existence of the inverse discrete Fourier

transform (I DFT). This fact means that the inverse trans-

formof(21) can befound asfollows:

gh ‘I = ~ ‘~’G(Y) esp [j2zr+]. (23)
r

The sampled value g~ of the original functio,, can be calculated

with the obtained value gl,” of (23). Since g~ is assumed to be

sampled at equally spaced points, the following relation can

be derived from (12) and (15):

N– 1

~ g,,’ = o.

/f=o

(24)

Similarly, from (11) and (16), the following relation is ob-

tained:

N– 1

~igk” = o. (25)
k= O

Assuming a trial value go’=gO’+Ag’ of go’, the first-order

derivative gk’canbe calculatedly (11) and (17) as follows:

(J~’ == gk’’+&~’+A/ (26)

where Ag’isthe deviationof g~’ from thetrue value of g~’. The

deviation Ag’ can be obtained from (26) using (24) and (25):

(27)

Once Ag’ is obtained, the true g~’ can be calculated succes-

sively from (26). The same discussion can be conducted to

calculate g~ by (12) from the calculated g~’, where (28) is used

instead of (24):

Iv— 1
G,(O) = ~ gr( (28)

k=O

where GP(0) is the zero-frequency component of the Fourier

spectrum of the polygon g~(x), that is, the area of the polygon.

The inverse transform of (23) reproduces the unsampled

value g~_l corresponding to the dummy data g~–1”(= 0) of

(22) on the straight line, as shown in Fig. 3.

In the numerical reconstruction of the Fresnel transform

hologram, the main subject is to calculate the convolution of

the hologram and the propagation function. The convolution

q(x) of two functions gP(x) and P(X) can be expressed by (29),

taking account of the straight line approximation

(29)

where the asterisk expresses the convolution integral. Let

G(f) and F’(f) be the Fourier transforms of d’gp(x) /dx2 and

p(x), respectively. The second-order derivative q~” of q(x) can

be obtained to calculate the inverse Fourier transform of

G(r). l’(r) according to (23). The procedure to calculate g(x)

from qk” is the same as to calculate gk from g~” as mentioned

before, where (30) is used instead of (28):

N– 1

,2 gk = Q(o) = G.(O) P(O). (30)

In (30), g~ are the sampled values of q(x) at equally spaced

points and O(O) is the zero-frequency component of the Fou-

rier spectrum of the polygon made of qk.

IV. EXPERIMENT

A. Construction of a One-Dimensional Hologram

A one-dimensional microwave hologram is recorded in the

experimental configuration of Fig. 1(a). The frequency of the

microwave signal is chosen as 9.4 GHz. The object is an

aluminium plate of 20 cm width and 2 m length. A diode

detector scans the microwave field along the horizontal line of

about 2 m length, where the height of the line is arranged to

be the same as that of the wave source. Thus the data of the

one-dimensional hologram are obtained. The distance zo from

the source plane to the object plane and Z1 from the object

plane to the hologram plane are chosen as .ZO = 4.8 m and

Z1= 1.8 m, respectively. The hologram obtained is shown in
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Fig. 4, where the interference fringes become finer as the

aperture edge is approached.

For the numerical reconstruction, this one-dimensional

hologram is sampled in three ways. First, the hologram of the

whole aperture L is sampled with 40 equally spaced sampling

points; this is hologram A. The hologram of aperture 3L/4 is

sampled with the same sampling period as A and is named

hologram B. This hologram consists of 30 sampling points.

The hologram .S is made for the straight line approximation

method, where the hologram of aperture L is divided into four

parts, that is, two center parts and two edge parts, and the

hologram is sampled with 10 sampling points at center parts,

with 20 sampling points at the edges. Thus the sampled data

of hologram S coincide with those of hologram A at the edges,

while they coincide with all other data of hologram A at

the center parts. To process the data of hologram S, 10 dummy

data points, that is 10 zeros, are inserted at the center parts,

resulting in the data of 40 sampled points in the stage of

computer calculation. These different ways of sampling are

shown in Fig. 4.

B. Numerical Reconstruction oj Images by Computer

Since the numerical reconstruction of images from long-

wavelength holograms is described in detail in [3], the outline

of the procedure is mentioned briefly. Refering to the optical

reconstruction in the geometry of Fig. 1(b), where the optical

wavelength is assumed to be same as that of the microwave

and the hologram reduction process is neglected for simplicity
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of discussion, the images are reconstructed to perform the

Fresnel transform of the hologram, as expressed by the fol-

lowing convolution equation:

q(x) = h(%) *p(x) (31)

where q(x) and h(x) express the reconstructed image and the

hologram. The function p(x) in (31) is called a propagation

function and is expressed as follows:

‘(’) ‘ex’(-’e%’)
(32)

where %2is the distance between the hologram plane and the

image plane as shown in Fig. l(b). The position 22of the image

plane can be determined as follows [3, eq. (6):]

21(20 + 21)
22 =!? —. (33)

Zo

The Fourier transform P(f) of p(x) can be calculated

analytically as follows:

l’(f) = exp (jrkz,-fz) (34)

where the constant coefficient is neglected. Since the fre-

quency domain is also sampled with the interval l/L as

shown in (20) in the FFT algorithm, (20) is substituted into

(34), resulting in the following:

()
P ~ = exp (j7rzr2) (35)

AZ? Xzl(.zo + Zl)
~~—.

~z L?zO — “
(36)

The parameter z of (36) can be calculated with the experi-

mental values of 1, L, ZC, and zl in the hologram-construction

process.

The numerical reconstruction of images is conducted with

respect to three holograms A, B, and S’. The parameter z of

(36) is calculated with the experimental values, resulting in

z = 0.02 [z= 0.02 X (4/3)2 in the case of B]. In practice, the

best images are reconstructed for the value z = 0.0203

where

[z= 0.0203 X (4/3)2 in the case of 3 ]. The images from holo-

grams A and B are numerically reconstructed according to the

customary DFT algorithm, and the calculated images are

shown in Fig. 5. A recognizable difference between these

images suggests the effect of the number of sampling points

and aperture sizes of holograms on the reconstructed images.

The image from hologram S is also reconstructed by the

straight line approximation method. The reconstructed image

is shown in Fig. 5. This image closely resembles that of holo-

gram A, especially at the edges where the image from holo-

gram B has no reconstructed image points because of the

shortage of sampling points. This means that the image recon-

structed with 30 true data and 10 dummy (zero) data by the

straight line approximation method is almost equivalent

to the image reconstructed with 40 true data by the cus-

tomary DFT method. This experimental result confirms the

argument that the sampling points on the hologram can be

reduced and images can be reconstructed numerically with less

data by the straight line approximation, as compared with the

customary DFT method. The numerical reconstruction by

the straight line approximation has a potentiality in a holo-

graphic system where the hologram data are sampled with a

limited number of detectors arranged on the hologram plane

and the hologram data are processed by the computer of an

on-line system to reconstruct images in real time without

optical processing.
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