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On the Numerical Reconstruction of Images

from a Microwave Hologram

KEINOSUKE NAGAI, YOSHINAO AOKI, ano MICHIO SUZUKI

Abstract—A new technique for the numerical reconstruction
of images from a long-wavelength hologram is proposed. The
technique is to calculate images by the fast Fourier transform
(FFT) algorithm with the hologram data sampled by a straight line
approximation. This sampling technique is convenient to reduce the
number of the sampling points, and the image can be reconstructed
with less data than the conventional equally spaced sampling method.
A one-dimensional hologram is constructed at S band and an image
is reconstructed by the proposed method. These results are discussed
and compared with the results of the conventional numerical re-
construction.

I. INTRODUCTION

N THE PROCESS of reconstructing images from micro-
]:[ wave or soundwave holograms, the optical method is

usually adopted for its ease and high capacity as a pro-
cessor. The numerical method using a computer is another
technique for hologram data processing. The disadvantage
of the numerical method is that the hologram information to
be processed by this method is greatly limited by practical
considerations compared with the optical method. However,
since the information contained in a microwave or sound-
wave hologram is much less than that of an optical hologram,
the numerical method is a promising technique in reconstruct-
ing images from long-wavelength holograms. A few papers
have reported on this technique [1]-[3]. In these papers, the
hologram data are sampled at equally spaced sampling points
and two-dimensional Fresnel transform of the sampled data is
calculated using the fast Fourier transform (FFT) algorithm
[4], resulting in the reconstruction of images. In this paper a
straight line approximation technique is proposed to sample
the hologram data and a method to insert dummy data is dis-
cussed to apply the FFT algorithm in the proposed sampling
technique. Since this technique has the advantage that images
can be calculated with less nonzero data, compared with the
conventional sampling technique, it is useful in situations
where the total number of the sampling points of the hologram
is limited. To verify the proposed technique, a one-dimen-
sional microwave hologram is recorded at S band. This one-
dimensional hologram is sampled with the straight line ap-
proximation and an image is calculated. The results obtained
are discussed and compared with those of the conventional
numerical reconstruction method.

II. SAMPLING OF HOLOGRAM DATA
A. Equally Spaced Sampling

In scanned-type holography, it takes much time to con-
struct a hologram. To overcome this disadvantage, a linear or
planar detecting array system can be considered. In this sys-
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tem the number of array elements is limited from the techni-
cal and economical points of view. Therefore, it is questioned
how to arrange the array elements on the hologram plane. The
most suitable way is to place them at equally spaced points,
when any information of hologram data is not known a priori,
The same situation occurs in the numerical image reconstruc-
tion, where the FFT algorithm is used, resulting in the sam-
pling at equally spaced points. This sampling method deter-
mines a criterion for the maximum spatial frequency to be
recorded as the hologram data.

Let the number of the equally spaced sampling points be N
with respect to the one-dimensional holegram of aperture L.
The spacing Ax of each sampling point is obtained as follows:

M= (1
X =
N

Since the hologram aperture is limited, the higher spatial-
frequency part of the hologram cannot be recorded. The
maximum spatial frequency famax to be recorded in the holo-
gram is obtained referring to the result of [6]:

L
2)\21

7l;ll max — (2)
where A is the wavelength of the microwave signal and 2 is the
distance from the object plane to the hologram plane. On the
other hand, the maximum spatial frequency fsmax allowable
for the sampling with the period Ax is obtained by the sam-
pling theory as follows:

1
2Ax

fS max — (3)
Therefore, the maximum frequency fmax of the hologram is
determined as the lower one of f4 max and fg max and is expressed
as follows:

fmnx = min (fA max,fS max)- (4)

Roughly speaking, the resolution of the reconstructed images
depends on the value of fmax. This fact suggests to us that the
most desirable way for arranging sampling points on the
hologram plane is to place them as satisfying the following
condition;

fa4 max = fS max. (5)

From (1)~(3), the minimum spacing (Ax)min and the aperture
L to satisfy (5) are obtained with the parameters N, 21, and N:

(ax) Az <>\:1>”2 ©
X)min = 7 =\ 7~ J
L N

L = (\sN)M2. )

il
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Fig. 1. The geometry of the problem. (a) The geometry of producing

the hologram. (b) The optical geometry of reproducing images.
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Thus the maximum frequency is as follows:

i) ®

Equation (8) expresses the criterion for the resolution of the
reconstructed images.

fmax =

B. Reduction of Sampling Points

For a given sampling number N, the minimum spacing
(Ax)min is determined by (6). When a hologram of a point
object, that is a Fresnel zone plate, is considered, (Ax)yin is
the spacing between two zones at the aperture end x=L/2
[see Fig. 1(a), letting zo— ] with the paraxial ray approxima-
tion. The variance of the interference fringes of a zone plate
becomes smaller as the center is approached. A hologram may
be considered as a linear superposition of many zone plates
[5]. For example, object waves O; and O; of two point objects
are assumed to be recorded by the square-law detection with a
coherent background b, and the hologram % is expressed as
follows:

h=|b+ 014 0.]2= | 8|2+ %01 + 0y)

4+ 5(0r* + 0% + | 014 0:1% (9)
Since the background term & is assumed to be much greater
than object terms O; and O:, the term |O1-+0s|2 can be ne-
glected and (9) expresses the linear superposition of object

waves O; and O,. Therefore, near both centers of the zone
plates associated with object waves O; and O, the interfer-

ence fringes vary slowly by virtue of the linear superposition,
while they vary rapidly toward the edge of the aperture.
These facts suggest the reduction of sampling points near the
centers of the zone plates. For example, a zone plate may be
sampled with the sampling period 2(Ax)mi,, twice that of the
minimum sampling period of (6), at the center part of the
hologram, while with the sampling period (A%)min at another
part, without greatly deteriorating the quality of recon-
structed images. From these arguments, if the geometry of
the object and illuminating waveshapes, that is the geometri-
cal shadow of the object on the hologram plane, is known, it is
possible to sample the hologram data with a greater sampling
period than (Ax)min at the shadow area, where the interference
fringes vary slowly without much deterioration of the recon-
structed images. In this manner the sampling points may be
reduced as compared with the equally spaced sampling.
However, a problem arises when the hologram data of the
reduced sampling points are processed numerically with the
aid of the FFT algorithm. The FFT algorithm requires the
sampled data at equally spaced points. To solve this problem,
a technique to insert dummy data is considered. However, if
the dummy data to be inserted in the calculation process are
nonzero, the advantage of reducing the sampling points van-
ishes. For this reason, the hologram data are sampled with a
straight line approximation, where dummy data can be trans-
formed to zero-valued data in the stage of computation.

I11. ALGORITHM OF FOURIER TRANSFORM BY
STRAIGHT LINE APPROXIMATION

A. Fourier Transform by Straight Line Approximation

A brief explanation is presented to evaluate the Fourier
transform by the straight line approximation. As shown in
Fig. 2(a), a function g(x) is approximated by a polygon g,(x)
with only straight lines, Let gr=g(xz) (£=0,1, - - -+, N—1) be
the value of g(x) at the point x; where g(xi) =gp(xr). The
second-order derivative of g,(x) can be expressed as follows:

d2g (x) N—2
T 2 & — ) (10)
o k=1
where
o’ =g — gt (11)
o = 8e+1 — &k (12)

L1 — Xk

and §(x) is the Dirac delta function. The schematic explana-
tion to deduce (10)—-(12) is shown in Fig. 2. Let G(f) be the
Fourier transform of the function d?g(x)/dx? defined as fol-
lows:

wd?x
Gm=f %%aﬂqmﬂm (13)

—o0

Substituting (10) into (13), G(f) can be expressed as follows
[7]:
N2
G(f) = 20 g exp | —j2nfxel. (14)
k=1

Equation (14) has a form similar to a discrete Fourier trans-
form (DFT), but it differs from the DFT in the point that the
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Fig. 2. The explanation of x5, 2(%), g,(x), 2, g, and gi”’.
sampling point x; can be chosen arbitrarily in the straight line N1 . _rk
approximation, while the DFT requires the sampled data at G(r) = Z 8 €xp [—12"7 ]_V (2
k=0

equally spaced points. The arbitrariness of sampling is an
advantage of the straight line approximation,

B. Application of FFT

In order to calculate G(f) of (14) by the FFT algorithm, it
is necessary to coincide (14) formally with the DFT. For this
reason g(x) is considered within the region [0, L] and outside
of this region g(x) repeats itself with the period L. Therefore,
the following relation is added:

N = Ko (15)
gN—1' = w = g_x' (16)
L — 2y
and from (11),
g =g — g/
gN——lll = gN—l' - gN—z’- (17)

Adding go'’ and gy—1'’ to (14), the following expression can be
obtained (see Fig. 2):
N~1

G(f) = E g’ exp [—j2nfm]. (18)

The region {0, L] is assumed to be divided into N sections
with equal spacing and the straight line approximation is
adopted. Then x; of (18) expresses the sampling coordinate at
equally spaced points and is written as follows:

L
xk=*—k,

N

k

0,1, --+,N—1. (19)

In the DFT, the frequency is also sampled in the frequency
domain as follows:

=0,1,---,N—1. (20)

Substituting (19) and (20) into (18),

is obtained, where G(r/L) is expressed by G(r). Using (21), the
Fourier spectrum G(r) can be calculated with the data g'’
obtained by the straight line approximation. However, in
(21), the advantage that the arbitrary points can be chosen
as the sampling points in (18) is lost. For this reason, a tech-
nique to insert the dummy data is proposed to save the ad-
vantage of the straight line approximation even a little.

C. Insertion of Dummy Data

In the smooth part of the original function g(x), the
straight segments of the polygon g,(x) can be taken longer
than the minimum sampling period determined by a certain
criterion. In the discussion on the zone plate in Section II-A,
this criterion is the minimum sampling period (Ax)min of (6) to
record the maximum frequency fmax of (8). In Section II-B it
is argued that the sampling points can be reduced near the
center of the zone plate, where the function of the zone plate
becomes smoother. For example, the smooth part of the func-
tion can be sampled with the period twice of the fundamental
one as shown in Fig. 3. However, additional data, that is
dummy data, are necessary to process the data by (21). If the
dummy data to be inserted are nonzero data, it is useless to
reduce sampling points at the smooth part of the function.
Since the second-order derivative of the straight line is zero,
the dummy data gz—'" at the unsampled point xx_; are always
zero, as shown in Fig. 3, in the straight line approximation:

g1 = 0. (22)

With the data of (22), the number of calculating operations in
the FFT algorithm can be reduced. If the total number of the
sampling points is limited in the hologram-constructing sys-
tem, the hologram can be sampled more closely at the part of
fine interference fringes, or a larger hologram aperture can be
recorded compared with the equally spaced sampling, insert-
ing dummy data by the straight line approximation. The error
of the FFT in the straight line approximation can be esti-
mated by the deviation of the polygon from the original func-
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Fig. 3. Insertion of the dummy data and the reproduced data by the
inverse transform. (a) Data gr.s, g, and gr4e exist only at %3, #z, and
Xk42, Tespectively. (b) g’. (¢) g/’ is nonzero at xp_s, Xk, Xry2, and zero
atthe other points. (d) Databy theinverse transform;: - - = - - = - - = = o;
origmal data: - - - X. (e) The general case.

tion, while the error of the customary DFT is understood as
the aliasing error.

D. Inverse Transform and Convolution

The orthogonal property of exponential function in the
DFT guarantees the existence of the inverse discrete Fourier
transform (IDFT). This fact means that the inverse trans-
form of (21) can be found as follows:

N—1

k
@ =-— 2 G{r) exp |:j27r —]é:l

N = (23)

The sampled value g of the original function can be calculated
with the obtained value g’ of (23). Since gi is assumed to be
sampled at equally spaced points, the following relation can
be derived from (12) and (15):

N-—1

2 g =0

k=0

(24)

Similarly, from (11) and (16), the following relation is ob-
tained:

(25)

Assuming a trial value go’=g¢+Ag" of g, the first-order
derivative g3’ can be calculated by (11) and (17) as follows:
g = g” + g1 + AL (26)
where Ag’ is the deviation of gi’ from the true value of g’. The
deviation Ag’ can be obtained from (26) using (24) and (25):

1 N—1

Agd =— D gi. (27
g N}Z% s )

Once Ag’ is obtained, the true gz’ can be calculated succes-
sively from (26). The same discussion can be conducted to
calculate g; by (12) from the calculated g/, where (28) is used
instead of (24):

N-—1

G,(0) = ; g (28)

where G,(0) is the zero-frequency component of the Fourier
spectrum of the polygon g,(x), thatis, the area of the polygon.
The inverse transform of (23) reproduces the unsampled
value gr_1 corresponding to the dummy data g—;""(=0) of
(22) on the straight line, as shown in Fig. 3.

" In the numerical reconstruction of the Fresnel transform
hologram, the main subject is to calculate the convolution of
the hologram and the propagation function. The convolution
g(x) of two functions gp(x) and p(x) can be expressed by (29),
taking account of the straight line approximation

dq(e) _ dg(x)

ax?* dx?

* p(x) (29)

where the asterisk expresses the convolution integral. Let
G(f) and P(f) be the Fourier transforms of d2g,(x)/dx?* and
p(x), respectively. The second-order derivative ¢;' of g(«x) can
be obtained to calculate the inverse Fourier transform of
G(r)- P(r) according to (23). The procedure to calculate g(x)
from gi/' is the same as to calculate g; from g’ as mentioned
before, where (30) is used instead of (28):

N—1

2. g = Q(0) = G»(0)- P(0).

k=0

(30)

In (30), g are the sampled values of ¢{x) at equally spaced
points and Q(0) is the zero-frequency component of the Fou-
rier spectrum of the polygon made of gz.

IV. EXPERIMENT
A. Construction of ¢ One-Dimensional Hologram

A one-dimensional microwave hologram is recorded in the
experimental configuration of Fig. 1(a). The frequency of the
microwave signal is chosen as 9.4 GHz. The object is an
aluminium plate of 20 ¢m width and 2 m length. A diode
detector scans the microwave field along the horizontal line of
about 2 m length, where the height of the line is arranged to
be the same as that of the wave source. Thus the data of the
one-dimensional hologram are obtained. The distance 2o from
the source plane to the object plane and s from the object
plane to the hologram plane are chosen as 2,=4.8 m and
21=1.8 m, respectively. The hologram obtained is shown in
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Fig. 4, where the interference fringes become finer as the
aperture edge is approached.

For the numerical reconstruction, this one-dimensional
hologram is sampled in three ways. First, the hologram of the
whole aperture L is sampled with 40 equally spaced sampling
points; this is hologram A. The hologram of aperture 3L/4 is
sampled with the same sampling period as 4 and is named
hologram B. This hologram consists of 30 sampling points.
The hologram .S is made for the straight line approximation
method, where the hologram of aperture L is divided into four
parts, that is, two center parts and two edge parts, and the
hologram is sampled with 10 sampling points-at center parts,
with 20 sampling points at the edges. Thus the sampled data
of hologram S coincide with those of hologram 4 at the edges,

while they coincide with all other data of hologram 4 at
the center parts. To process the data of hologram S, 10 dummy
data points, that is 10 zeros, are inserted at the center parts,
resulting in the data of 40 sampled points in the stage of
computer calculation. These different ways of sampling are
shown in Fig. 4.

B. Numerical Reconstruction of Images by Computer

Since the numerical reconstruction of images from long-
wavelength holograms is described in detail in [3], the outline
of the procedure is mentioned briefly. Refering to the optical
reconstruction in the geometry of Fig. 1(b), where the optical
wavelength is assumed to be same as that of the microwave
and the hologram reduction process is neglected for simplicity
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of discussion, the images are reconstructed to perform the
Fresnel transform of the hologram, as expressed by the fol-
lowing convolution equation:

q(x) = h(x) * pla) (31)

where ¢(x) and A(x) express the reconstructed image and the
hologram. The function p(x) in (31) is called a propagation
function and is expressed as follows:

p(x) = exp <—J' IV xz)

2

(32)

where 2; is the distance between the hologram plane and the
image plane as shown in Fig. 1(b). The position 2 of the image
plane can be determined as follows [3, eq. (6):]

. 21(20 +f£ )

Zg

22 (33)

The Fourier transform P(f) of p{(x) can be calculated
analytically as follows:

P(f) = exp (jmhzsf?) (34)

where the constant coefficient is neglected. Since the fre-
quency domain is also sampled with the interval 1/L as
shown in (20) in the FFT algorithm, (20) is substituted into
(34}, resulting in the following:

r
P(E) = exp (jwar?) (35)
where
A2 Az1{z0 + 2
g = - Ao + 21) (36)
L? L220

The parameter z of (36) can be calculated with the experi-
mental values of N\, L, z¢, and 2 in the hologram-construction
process.

The numerical reconstruction of images is conducted with
respect to three holograms 4, B, and S. The parameter s of
(36) is calculated with the experimental values, resulting in
3=0.02 [=0.02X(4/3)% in the case of B]. In practice, the
best images are reconstructed for the value 2=0.0203

[2=0.0203 X (4/3)2 in the case of B]. The images from holo-
grams A and B are numerically reconstructed according to the
customary DFT algorithm, and the calculated images are
shown in Fig. 5. A recognizable difference between these
images suggests the effect of the number of sampling points
and aperture sizes of holograms on the reconstructed images.
The image from hologram S is also reconstructed by the
straight line approximation method. The reconstructed image
is shown in Fig. 5. This image closely resembles that of holo-
gram 4, especially at the edges where the image from holo-
gram B has no reconstructed image points because of the
shortage of sampling points. This means that the image recon-
structed with 30 true data and 10 dummy (zero) data by the
straight line approximation method is almost equivalent
to the image reconstructed with 40 true data by the cus-
tomary DFT method. This experimental result confirms the
argument that the sampling points on the hologram can be
reduced and images can be reconstructed numerically with less
data by the straightline approximation, as compared with the
customary DFT method. The numerical reconstruction by
the straight line approximation has a potentiality in a holo-
graphic system where the hologram data are sampled with a
limited number of detectors arranged on the hologram plane
and the hologram data are processed by the computer of an
on-line system to reconstruct images in real time without
optical processing.
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